

PSPBoot1.2 User’s Guide

Revision 3.0
June 30, 2004

Document # PSP Bootloader User’s Guide

Abstract

This document is the user’s guide for the PSP Bootloader product and include build

instructions, shell commands description, environment variables and FFS documentation,

etc.

Table of Contents

1 INTRODUCTION ..4

1.1 Purpose..4

1.2 Reference Documents ...4

1.3 Tools Used ..4

1.4 Abbreviations..4

2 STARTING UP...6

2.1 PSP Bootloader features ...6

2.2 POST in PSPBoot ...6

2.3 PSPBoot Configuration...7

2.4 Makefile targets ..7

2.5 Build options...7

2.6 Burning Bootloader on Flash ..10

2.6.1 Burning PSPBoot with VisionICE..10

2.6.2 Burning PSPBoot with BDI 2000...11

2.7 PSPBoot File and Directory Structure ..17

2.7.1 Directory Structure..17

2.7.2 Files List..17

2.8 Supported Flash Devices...19

3 BOOTLOADER USAGE AND SHELL COMMANDS ...20

3.1 Bootloader built-in commands..21

3.1.1 tftp ...21

3.1.2 oclk..22

3.1.3 boot ...23

3.1.4 df ...24

3.1.5 fmt ...24

3.1.6 setenv ..25

3.1.7 unsetenv ..26

3.1.8 ls..26

3.1.9 cp...26

3.1.10 rm ..26

3.1.11 reboot ..27

3.1.12 dm ...27

3.1.13 printenv ...27

3.1.14 cat ..28

3.1.15 help..28

3.1.16 defragenv...28

3.1.17 ftp ..28

3.1.18 fa ...29

3.1.19 info ..30

3.1.20 version...30

4 SYSTEM ENVIORNMENT VARIABLES...31

4.1 Customizing Environment Support ..31

4.2 Environment API List ...31

4.2.1 sys_initenv ..31

4.2.2 sys_setenv ...32

4.2.3 sys_getenv...33

4.2.4 sys_unsetenv ...33

4.2.5 sh_printenv (shell command)..34

4.3 Pre-defined Environment Variables..34

4.4 Adding Environment Variables ..37

4.4.1 Adding new pre-defined environment variables...37

4.4.2 Adding new dynamic environment variables ...37

5 FLASH FILE SYSTEM (FFS) ...38

5.1 API List ...38

5.1.1 ffs_init ...38

5.1.2 ffs_fopen ...38

5.1.3 ffs_fread ..38

5.1.4 ffs_fwrite...39

5.1.5 ffs_fseek..39

5.1.6 ffs_fclose...40

5.1.7 ffs_remove ..40

6 ENVIRONMENT AND FFS SUPPORT FOR OPERATING SYSTEMs.................42

7 DHCP SUPPORT ...43

8 BOOTLOADER CUSTOMIZATION..45

8.1 Application Support: Extending Bootloader Functionality.45

8.1.1 Introduction...45

8.1.2 Application interface to PSPBoot ...45

8.1.3 Writing applications for PSPBoot...45

8.1.4 Compiling applications for PSPBoot ..45

8.1.5 Sample applications ..46

8.2 Flash Memory Manager: Allocating Sections in Flash.......................................46

8.3 BU specific Hooks ..47

8.4 EMIF configuration ..48

8.5 Miscellaneous Customizations..48

8.5.1 Secondary Flash Support ..48

9 KNOWN LIMITATIONS ..49

1 INTRODUCTION

1.1 Purpose

This document discusses the PSP Bootloader Package (referred to as “PSPBoot”) . It

describes the Makefiles, configurations, directory structure and files, shell commands and

usage, system environment variables, Flash File System (FFS), customization of PSPBoot

and writing applications for PSPBoot.

1.2 Reference Documents

The following documents are among the reference material used to develop the PSP

Bootloader:

Ø Architecture specific documents for Avalanche I, Avalanche D, Puma S

(TNETC4401), Titan (TNETV1050) and Sangam (TNETD73XX) and Apex

(TNETV1020) the User Guides for their reference boards.

Ø Books

o “See MIPS Run”, Dominic Sweetman, 1999

o “MIPS R4000 Users Manual”, Joe Heinrich, 1993

1.3 Tools Used

The following tools are used in developing the PSP Bootloader:

Ø VxWorks for MIPS, Tornado 2.1.2 (Wind River Systems)

Ø MontaVista Tool chain for MIPS.

Ø Vision ICE II with VisionClick (Wind River Systems).

1.4 Abbreviations

BasePSP Base Platform Support Package

BU TI Business Unit

CPMAC TI proprietary Ethernet Interface

DHCP Dynamic Host Configuration Protocol

DMA Direct Memory Access

ELF Executable and Linking Format

FFS Flash File System

FMM Flash Memory Manager

GZIP GNU Zip utility

HAL Hardware Abstraction Layer

ICE In-Circuit Emulator

PC Personal Computer

POST Power On Self Test

PSBL Platform Support Package Bootloader

SoC System On a Chip

SRR System Resident Routines

UART Universal Asynchronous Receiver Transmitter

VoB Versioned Object Base

WLAN Wireless Local Area Network

2 STARTING UP

To use the PSP Bootloader, it should be built for the respective board and then burned on

to the Flash. To build from ClearCase, only one VoB − psp_boot needs to be

mounted. Following is the high level features as well as the description for configuring

and building it. No particular setup of environment for build is required, except for

making sure that the tool-chain intended for build is present in the path. No utility is

provided for putting the tool-chain in path. Currently two tool-chains are supported:

Tornado tool-chain (for build on a windows host) and MontaVista tool-chain (for

build on a Linux host).

2.1 PSP Bootloader features

Ø Flash File System and Environment variables support

Ø Enhanced Shell engine with command support for OS load, boot, set/get/unset

environment variables, Flash usage, etc.

Ø ELF as the standard executable file format, with extended support for BIB format

Ø GZIP decompression utility for ELF files

Ø Auto-detection of file formats for execution

Ø Serial/TFTP/FTP download of images

Ø Distributed application execution from Flash File System or Host machine

Ø DHCP support for dynamic target configuration

Ø Application Framework for developing applications on PSPBoot along with

sample applications

Ø PC Application support for control of bootloader from remote host

2.2 POST in PSPBoot

PSPBoot performs minimal POST (Power On Self Test) after it boots up.

As part of POST, the following tests are carried out in order:

§ External SDRAM accessibility Test: This tests out the accessibility of the

external SDRAM.

§ External SDRAM Address Bus Test: This tests out the address lines [2:18] of the

address bus to the External SDRAM.

§ External SDRAM Data Bus Test: This tests out the data lines [0:31] of the data

bus to the External SDRAM.

§ Internal SDRAM accessibility Test: This tests out the accessibility of the Internal

SDRAM.

§ Internal SDRAM Address Bus Test: This tests out the address lines [2:18] of the

address bus to the Internal SDRAM.

§ Internal SDRAM Data Bus Test: This tests out the data lines [0:31] of the data

bus to the Internal SDRAM.

2.3 PSPBoot Configuration

The PSP Bootloader supports configuration options for building it. These options are

defined in sysconf.h . Some of the configuration options are board and SoC specific and

will not be documented here. Following are the common parameters:

- CONF_CPU_FREQ : Boot CPU frequency

- CONF_SYS_FREQ : Boot System frequency

- CONF_SDRAM_SZ : SDRAM size

- CONF_FLASH_SZ : FLASH size

- CONF_CACHE : CACHE configuration (Write Back, Write through or None)

2.4 Makefile targets

- boot: This builds the bootloader images, psbl.rec and psbl.elf , to be used for

burning to the flash at location 0xb000’0000 . The image is placed in /bin

directory. boot option is the default rule for make.

- all: Same as boot

- clean: clean the Build. Removes all of the .o's and .a's.

The Bootloader Makefile is placed in the top-level directory.

2.5 Build options

The Build option can be provided through bootcfg.mak file placed in the top level

directory. Following are the build options that should be supplied while invoking the

makefile. The values of any of these options provided in bootcfg.mak can be

overridden by providing another option at the command line.

- BOARD=<BOARD NAME>

This option defines the reference board type. For the latest list of supported boards,

please refer to the bootcfg.mak file of the latest release. The Platforms

supported under WLAN Board type are TNETWA113VG, TNETWA622, PCI-EVM
and TNETWA123VAG

- ENDIAN=<LE | BE >

This option defines Endian type. LE for Little Endian and BE for Big Endian.

- NETWORK_VEHICLE=<FTP | TFTP | NONE >

This option defines protocol to be used for file transfer over the network. Choose

FTP for File Transfer Protocol, TFTP for Trivial File Transfer Protocol and NONE

for no networking support. Please note that FTP can be used only in the absence of

Flash File System (see option FFS)

-DHCP=<YES | NO>

This option defines if DHCP Support be included in or not.

-PC_APP=<YES | NO>

This option defined if PC Application support is included or not. PC application

can only be compiled in the Little Endian Mode. PC application cannot be used

combined with FTP or TFTP support.

- FFS=<YES | NO >

This option defines whether to use TI proprietary Flash File System or not.

- PLATFORM=<WINDOWS | LINUX >

This option defines the tool-chain using which the build is taking place. Use

WINDOWS for building using the Tornado tool-chain installed on a Windows

host and LINUX for MontaVista tool-chain.

- CONF_OMOD_GZIP=<YES | NO >

This option defines if GZIP decompression support is to be built in or not.

- CONF_OMOD_ELF=<YES | NO >

This option defines if ELF file format support is to be built in or not.

- CONF_OMOD_TIBINARY=<YES | NO >

This option defines if TI Proprietary Binary File Format support is to be built in or

not.

- CONF_OCMD_REBOOT=<YES | NO >

This option defines if the ‘reboot ’ shell command is to be provided or not.

- CONF_OCMD_VERSION=<YES | NO >

This option defines if the ‘version ’ shell command is to be provided or not.

- CONF_OCMD_INFO=<YES | NO >

This option defines if the ‘info ’ shell command is to be provided or not.

- CONF_OCMD_FA=<YES | NO >

This option defines if the ‘fa ’ shell command is to be provided or not.

- CONF_OCMD_PRINTENV=<YES | NO >

This option defines if the ‘printenv ’ shell command is to be provided or not.

- CONF_OCMD_SETENV=<YES | NO >

This option defines if the ‘setenv ’ shell command is to be provided or not.

- CONF_OCMD_UNSETENV=<YES | NO >

This option defines if the ‘unsetenv ’ shell command is to be provided or not.

- CONF_OCMD_DEFRAGENV=<YES | NO >

This option defines if the ‘defragenv ’ shell command is to be provided or not.

- CONF_OCMD_FMT=<YES | NO >

This option defines if the ‘fmt ’ shell command is to be provided or not.

- CONF_OCMD_BOOT=<YES | NO >

This option defines if the ‘boot ’ shell command is to be provided or not.

- CONF_OCMD_DM=<YES | NO >

This option defines if the ‘dm’ shell command is to be provided or not.

- CONF_OCMD_OCLK=<YES | NO >

This option defines if the ‘oclk ’ shell command is to be provided or not.

- CONF_OCMD_HELP=<YES | NO >

This option defines if the ‘help ’ shell command is to be provided or not.

- CONF_OCMD_LS=<YES | NO >

This option defines if the ‘ls ’ shell command is to be provided or not. Without

FFS support this option is ignored.

- CONF_OCMD_DF=<YES | NO >

This option defines if the ‘df ’ shell command is to be provided or not. Without

FFS support this option is ignored.

- CONF_OCMD_CP=<YES | NO >

This option defines if the ‘cp ’ shell command is to be provided or not. Without

FFS support this option is ignored.

- CONF_OCMD_CAT=<YES | NO >

This option defines if the ‘cat ’ shell command is to be provided or not. Without

FFS support this option is ignored.

- CONF_OCMD_RM=<YES | NO >

This option defines if the ‘rm’ shell command is to be provided or not. Without

FFS support this option is ignored.

- CONF_OCMD_TFTP=<YES | NO >

This option defines if the ‘tftp ’ shell command is to be provided or not. Without

TFTP support this option is ignored.

- CONF_OCMD_FTP=<YES | NO >

This option defines if the ‘ftp ’ shell command is to be provided or not. Without

FTP support this option is ignored.

After building the bootloader image, it is burned onto the Flash at a base address of

0xb000’0000 using VisionCLICK. Refer to the next section `Burning
BootLoader on Flash’ for details.

2.6 Burning Bootloader on Flash

2.6.1 Burning PSPBoot with VisionICE

The following procedure should be used for burning the bootloader on flash using

VisionICE.

Step 1 – Convert the bootloader S-RECORD file to the visionCLICK binary file

format:

In order to load a file into flash memory, visionCLICK requires that the file be in

visionCLICK BIN format. Typically, we do not include this file format in the bootloader

software distribution, but we do provide S-Record format versions of the bootloader

kernel. Therefore, the first step is to convert the bootloader kernel from S-Record format

to the visionCLICK BIN format. Note that this step is not required if you already have

the visionCLICK BIN format version of the bootloader kernel for your platform.

1. From the visionCLICK menu, click on File , and then Open Project
Files / Load Options Dialog. The PROJECTS / LOAD dialog box is

displayed.

2. Click the Load Options tab, then click the Convert… button

3. In the CONVERT BINARY AND SYMBOL OBJs dialog box:

Ø Enter the filename of the bootloader kernel file you want to convert in the

Select Input Object Module To Convert field. Bootloader S-

Record files have a filename extension of .rec

Ø Mark the check box to Create Flat BIN File For Flash
Programming and input the range of 90000000 to 9003FFFF. Clear all

other check boxes. Enter the destination filename where you wish the

resulting visionCLICK BIN format file to be placed.

Ø Enter –s in the Miscellaneous Parameters field. This specifies that

the input file be in S-Record format.

Ø Click the Convert button to perform the conversion. An MS-DOS

window will display the results of the conversion process. Press any key to

close the MS-DOS window.

Ø Click the OK button to close the CONVERT BINARY AND SYMBOL
OBJs dialog box.

Step 2 – Write the converted BIN file to your platform’s flash memory

1. After performing Step 1, the Load Options tab of the PROJECTS / LOAD

dialog box should be displayed. If not, then from the visionCLICK menu, click on

File , and then Open Project Files / Load Options Dialog. Then

click the Load Options tab.

2. Click the Flash Setup… button

3. In the TF FLASH PROGRAMMING dialog box…

Ø Enter the filename of the visionCLICK BIN format file created in Step 1

above in the Flash Card or PC Host File Name and Path
(0 Bias) field.

Ø Select the appropriate flash device used on your platform in the

Programming Algorithm field. See the table below.

Ø Enter B0000000 in the Base Address field, and click the Erase All

radio button. The whole flash should be erased for the first time only.

Ø Enter A0000000 in the Start Address field.

Ø Click the Erase and Program button. The specified BIN file will be

loaded into flash.

Ø Reset your platform to execute the newly loaded flash code.

The following table gives the VisionICE flash settings for currently supported Reference

Boards.

Reference Board Flash Device Choice for VisionClick

AR7VDB INTEL 28F128Jx (8192 x 16) 1 Device

AR7DB / AR7RD / AR7WRD /

AR7VWi / AR7L0 / AR7Wi

AMD 29DL32xxB(2048 x 16) 1 Device

TNETV1050VDB AMD 29DL32xxB(2048 x 16) 2 Devices

TNETV1050SDB INTEL 28F320C3T(2048 x 16) 2 Devices

TNETC401B INTEL 28F320Jx (2048 x 16) 1 Device

TNETC620 INTEL 28F320C3B(2048 x 16) 1 Device

TNETC621 INTEL 28F320C3B(2048 x 16) 1 Device

WLAN INTEL 28F320C3B(2048 x 16) 1 Device

TNETC520 INTEL 28F320C3B(2048 x 16) 1 Device

TNETC420 INTEL 28F160C3B(2048 x 16) 1 Device

TNETC405T INTEL 28F160C3T(1024 x 16) 1 Device

TNETV1020VDB INTEL 28F128Jx (8192 x 16) 1 Device

2.6.2 Burning PSPBoot with BDI 2000

2.6.2.1 Installing BDI2000 Software.

Unzip the Host software provided with BDI2000 onto the local disk. This installs the

BDI2000 software on the Host PC.

2.6.2.2 Configuring BDI2000 for MIPS

BDI2000 has to be configured for running with MIPS processor. To configure BDI2000

for MIPS, please follow the instructions given in Section 2.5 - Installation of the

Configuration Software from the BDI2000 user manual.

2.6.2.3 Establishing EJTAG connection to BDI2000

1. Connect the BDI2000 Emulator to DUT using the EJTAG port.

Warning: Pay special attention to the EJTAG connector pin orientation. Failing to

connect with proper orientation may lead to damage of the DUT or BDI2000 or

both.

2. Use a Null Modem cable to establish a serial connection between Host PC and the

BDI2000.

3. Connect the BDI2000 to the Local network using Ethernet Cable.

Warning: Power up sequence between BDI2000 and DUT is important. On

power-up of the system, first power-up the BDI only then the DUT. On system

power-down, first power-down the DUT and only then the BDI2000.

4. Run the executable “B20R4KGD.EXE” provided with the BDI Software.

From the GUI menu, select Setup → BDI2000…

By default, BDI2000 comes up with a baud rate of 57600.

Fill up the fields under “Connect BDI2000 Loader ” and

“Configuration ”. The configuration file to be provided is a board specific

configuration file. The details of the configuration file will be discussed later. At

this stage, only name of the configuration file is taken by BDI2000.

Now press the connect button. On success, you should see the SN field updated.

The Transmit button is also enabled. Press the Transmit Button now. All the

Data entered is saved with BDI2000. Once the data is updated to BDI2000, there is

no further need of the serial connection. Power Cycle the BDI2000 now.

5. After Reboot BDI uses TFTP the protocol to download configuration files from the

Host PC. The configuration files accessed are reg4kc.def (provided with the

installation software) and the board specific configuration file configured in the

previous step. After successfully downloading these files, BDI2000 initializes the

target.

6. Connect to BDI2000 by using telnet. BDI prompt should be available. Typing

help at this prompt gives a list of supported commands along with a brief

description.

2.6.2.4 Erasing and programming the flash using BDI2000

Use the command erase at the BDI telnet prompt to erase the flash.

The command erase <address> erases sector starting with that address. erase

called without arguments takes the sectors to be erased from the board configuration file.

Use the command prog to program psbl.bin into flash. The name of the file to be

programmed and the address to start the program, can be configured using the

configuration file.

2.6.2.5 Using the board specific configuration file

A brief description of various sections of the configuration file is given here. For more

detailed explanation, please refer to the BDI2000 user manual.

[INIT]

Optional section. Use this to perform any specific initializations. Examples: EMIF

initialization, TLB initialization, invalidating data and instruction cache or unlocking of

flash blocks for Intel flash chips. See example below.

[TARGET]

1. JTAGCLOCK
Configures the JTAG clock rate that BDI2000 uses when communicating with the target

CPU.

2. CPUTYPE

Set to M4KC.

3. ENDIAN

Defines whether the target CPU is in Big or Little Endian mode.

4. STARTUP

Set to RESET.

[HOST]

1. IP

The IP address of the Host PC.

2. PROMPT

The Telnet prompt string.

[FLASH]

1. WORKSPACE

The flash programming workspace. This should be pointed to internal RAM

(0xA0000000)

2. CHIPTYPE
This parameter defines the type of flash used. It is used to select the correct programming

algorithm.

Supported formats: AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16, AT49,

AT49X8, AT49X16, STRATAX8, STRATAX16, MIRROR, MIRRORX8, MIRRORX16

3. CHIPSIZE
The size of one flash chip in bytes

4. BUSWIDTH
The width of the memory bus that leads to the flash chips.

3. FILE

Name of the file to be used for flash programming (psbl.bin)

4. FORMAT

The format of the image file and an optional load address offset. For psbl.bin the

format is BIN. This entry also defines the address where the file is programmed into the

flash.

5. ERASE
The flash memory may be individually erased via the Telnet interface. In order to make

erasing of multiple flash sectors easier, you can enter an erase list. All entries in the erase

list will be processed if you enter erase at the Telnet prompt without any parameter.

Example:

ERASE 0xb0000000 ;erase sector 0 of flash
ERASE 0xb0010000 ;erase sector 1 of flash

NOTE: Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with

all blocks in locked state. In order to erase/program those flash chips, use the init list to

unlock the appropriate blocks.

WM16 0xB0000000 0x0060 ; unlock block 0
WM16 0xB0000000 0x00D0
WM16 0xB0010000 0x0060 ; unlock block 1
WM16 0xB0010000 0x00D0
WM16 0xB0000000 0xFFFF ; select read mode

2.6.2.6 Flash settings for currently supported boards

Following table defines the various settings for currently supported flash types.

Reference Board Chip Type Chip Size Bus Width

AR7VDB AM29BX16 0x400000 16

AR7DB / AR7RD /

AR7Wi / AR7VWi /

AR7WRD / AR7L0

AM29BX16 0x400000 16

TNETV1050VDB

TNETV1050SDB I28BX16 0x1000000 32

TNETC401B

TNETC620

TNETC621

WLAN I28BX16 0x200000 16

TNETC520

TNETC420

TNETC405T

TNETV1020VDB AM29BX16 0x1000000 16

2.7 PSPBoot File and Directory Structure

2.7.1 Directory Structure

Directory Path/Name Purpose

psp_boot PSPBoot directory

psp_boot\apps PSPBoot applications directory

psp_boot\bin PSPBoot binary images

psp_boot\lib PSPBoot libraries

psp_boot\inc PSPBoot headers directory

psp_boot\inc\psbl PSPBoot headers

psp_boot\inc\apps PSPBoot application headers

psp_boot\psbl PSPBoot sources

psp_boot\psbl\gzip PSPBoot compression sources

psp_boot\psbl\kernel PSPBoot kernel sources

Psp_boot\psbl\kernel\cmd PSPBoot command sources

psp_boot\psbl\net PSPBoot network sources

psp_boot\tools PSPBoot tools/utilities

Psp_boot\docs PSPBoot Documentation

Psp_boot\export
PSPBoot files exported for environment and FFS

support.

2.7.2 Files List

File Name Purpose

Makefile PSP Bootloader Makefile

Readme.txt Bootloader howto

rules.mak Makefile rules for inclusion in sub-directory makefiles

psbl.xn Bootloader linker Script

debug.h Debug Support Header File

elf.h ELF header file

env.h Environment Variables Header File

fmm.h Flash Memory Manager Header File

errno.h Error codes

ffs.h Flash File System Header File

flashop.h Flash HAL Header File

heapmgr.h Heap Manager Header File

hw.h Hardware definitions

mips.h MIPS processor Definitions

revision.h Revision Logs

sysconf.h Buildable Configuration Parameters

stdarg.h Stdarg header file

stdio.h Standard I/O Include File

stddef.h Standard Definitions and Typedefs

system.h System Header File

crc32.c Gzip CRC file

/psbl/gzip/*.[ch] Gzip Header files

mips4k_init.S Processor initialization routines

platform_init.S SoC initialization routines

srt0.S System startup routines

avreset.h SoC specific header file

fcb.h FCB header file

ffs_extra.h FFS extra routines header file

ffs_util.h FFS Utilities Header File

files.h Files abstraction header file

gdb_stub.h GDBL debug header file

load_bin.h Binary file load header file

load_elf.h Elf file load header file

loadfile.h File loading header file

main.h Main.c specific header file

mms.h Dynamic Memory Management Routines Header File

shell.h Shell header file

sio.h Serial interface header file

support.h Ctypes header file

sysdefs.h System Defintions Header File

env.c Environment Variable Routines Source File

fmm.c Flash Memory Manager Source File

exception.c Exceptions support Source File

fcb.c FCB source file

ffs.c FFS Routines Source File

ffs_extra.c Extra FFS routines Source File

ffs_util.c FFS Utilities Source File

files.c Files abstraction Source File

flashop_istrata_16.c Flash HAL (Intel Strata 16-bit Flash) Source file

flashop_istrata_32.c Flash HAL (Intel Strata 32-bit Flash) Source file

flashop_amd_16.c Flash HAL (AMD 16-bit Flash) Source file

heapmgr.c Heap Manager Source File

load_bin.c Binary load Source File

load_elf.c Elf load Source File

loadfile.c File loading Source File

main.c C startup routines Source File

mms.c Dynamic Memory Management Routines Source File

printf.c Printf Source File

shell.c Shell support Source File

sio.c Serial Interface Source File

support.c Ctypes Source File

i2c_defs.h I2C defines

i2c_hal.c I2C HAL sources

i2c_hal.h I2C HAL header file

cpmac.c CPMAC HAL source

cpmac.h CPMAC HAL header

arp.c ARP source

arp.h ARP header

ether.c Ethernet layer packet handling source

ether.h Ethernet layer header

ip.c IP layer routine source

ip.h Ip layer header

net.h General network header

tftp.c TFTP protocol routine source

tftp.h TFTP protocol header

udp.c UDP layer routine source

udp.h UDP protocol header

tinydhcp.c DHCP protocol source

tinydhcp.h DHCP protocol header

/lib/*.c Stdlib and string library sources

/psbl/kernel/cmd/*.c Command sources

2.8 Supported Flash Devices

These are the Flash devices currently supported on PSPBoot. (Found on various reference

boards).

Flash Type Part Number Flash HAL file

AMD Flash AMD AM29LV320D flashop_amd_16.c

Intel Strata Flash E28F320-J3A1110 flashop_istrata_16.c

Intel Strata Flash E28F128-J3C150 flashop_istrata_16.c

Intel Strata Flash DA28F640J5-150 flashop_istrata_32.c

Intel Strata Flash E28F160-C3TA110 flashop_is1050_16.c

Intel Strata Flash E28F320-C3TA110 flashop_is1050_16.c

Intel Strata Flash E28F640-C3TC80 flashop_is1050_16.c

Atmel Flash AT49LV320-90TI flashop_atmel_32.c

Intel Advanced+ C3 TE28F320C3TC90 flashop_ic3.c

3 BOOTLOADER USAGE AND SHELL COMMANDS

The PSP Bootloader is to be used with the sead1.exe application running on host as a

serial terminal for the emulation board. This application supports file download/upload

from/to the host to the target board via the serial interface. The sead1.exe terminal

defaults to 38400 baud with hardware flow control and port 1. To specify a baud rate, for

e.g. 9600, with no hardware flow control, and connect to serial port 2, run from the DOS

as:

After reset, if the BOOTCFG environment variable is set, the bootloader comes up and

tries to load the default OS boot image. It waits for 3 seconds for the user to break to the

shell prompt, if desired. For doing so, user should hit the ESC key when prompted. While

booting the OS image by default, if the image is not found, it falls to the shell. If the

BOOTCFG environment variable is not set, the bootloader automatically falls to shell. For

detailed description on the usage of BOOTCFG environment variable, please refer to the

description of ‘boot ’ command.

Following is the screen shot for jumping to the shell prompt:

The shell prompt is available for commands execution. The shell buffer size is 150 bytes. .

Following in this section is a list of commands that are built-in. Applications can also be

built for running with the shell. These application execution is distributed and can reside

either on the host machine in the directory where from sead1.exe is running, or can be

copied to the FFS in the /bin directory. The order of execution for PSPBoot is:

Builtin – bootloader built-in commands
/bin - applications in FFS, dir /bin
/ttyS – applications on Host,using serial interface

The path for execution of files on FFS can be changed using the PATH environment

variable. The built-in commands are always executed first. They cannot be overridden by

executables placed in the FFS. The FFS is installed in the flash by use of the ‘fmt ’

command.

Applications for execution from the shell should be in either of ELF format, Gzipped ELF

format or TI binary format.

Z:\psp_boot\bin> sead1.exe –b 9600 –f –p 2

PSPBoot1.1 rev: 1.0.2
(c) Copyright 2002-2003 Texas Instruments, Inc. All
Rights Reserved.

Press ESC for monitor... 1 # Press ESC key for shell
(psbl) # Bootloader prompt

3.1 Bootloader built-in commands

Following is the list of Bootloader built-in shell commands with their descriptions and

usage. At the end is provided a sample usage for booting an OS image.

3.1.1 tftp

Usage : tftp [-i <server-ip>] <srcfile> <dstfile>
 tftp [-r] <srcfile> [optional arguments]

Description :

This command downloads the `srcfile’ from a given host to `dstfile’ on

FFS, over the network using TFTP protocol. The host should be running TFTP

server to support the file download. This command can also be used to download an

executable file directly to RAM and start its execution. If ‘dstfile ’ is missing

TFTP to RAM is assumed. If arguments need be passed to the executable, ‘-r ’

option should be used. Note that files non-executable for the platform cannot be

downloaded to RAM.

This tftp module depend on environment variables for relevant network related

information. They are:

- HWA_[0|1] : System MAC address.

- IPA : System IP address.

- IPA_SVR: Target (or TFTP server) IP address, running tftp server.

- IPA_GATEWAY: The IP Address of the Gateway for the subnet in which

the target is present. This parameter is not required if IPA and IPA_SVR

belong to the same subnet.

- SUBNET_MASK: The Subnet Mask for the subnet in which the target is

present.

- MAC_PORT: The active MAC port number. (Valid values 0 or 1).

- TFTPCFG: (Optional) Configuration of Re-transmissions count and time-

out time in seconds.

The server IP address, configured in the environment variable can be overridden if

the server-ip is given in the command line.

The TFTP server should be configured to transfer data packets of 512 byte-blocks.

NOTE:

- This command doesn’t support file upload to the server.

 [-i <server-ip>]

Host IP, running tftp server. This option overrides the IPA_SVR environment

variable.

 [-r]

 Download ‘srcfile’ directly to RAM. Any following arguments

 ([Optional arguments]) are considered as arguments to ‘srcfile’

 <srcfile>

File to retrieve from the tftp server.

 <dstfile>
If FFS is built in, this should be a file name with path, to copy srcfile to.

In case FFS is not built in, this should be an environment variable of the

format base_address,end_address. (both addresses in Flash) (eg

0x90200000,0x90300000) In this case, srcfile will be copied to the raw

flash, starting at the base address specified.

See Also :
cp

3.1.2 oclk

Usage: oclk –d
 oclk <[-s sys_freq] [cpu_freq]>

Note: sys_freq and cpu_freq are specified in MHz units.

Description :

This command supports run-time configuration of system and CPU frequencies.

For the SYNC mode, either of the CPU or System frequency can be provided. In this

mode, only the System frequency is configured.

[-d]

Dump the current configuration of both CPU and System frequencies.

[-s <sys_freq>]

System frequency for configuration. If provided value is out of valid range, it

is configured to the closest valid frequency. A value of zero leads to the

System frequency value remaining unchanged.

[cpu_freq]

CPU frequency for configuration. If provided value is out of valid range, it is

configured to the closest frequency. A value of zero leads to the CPU

frequency value remaining unchanged.

Important Note:

1. The oclk command sets the CPU and System Frequency only in steps of 12.5

MHz starting from the minimum value and going upto the maximum

permissible value.

2. oclk command does not accept floating point values as input for system and

CPU frequency.

3. For a given input of System or CPU frequency, the nearest multiple of 12.5

MHz lower to the asked frequency is set. For example, To set the CPU

frequency to 32.5 Mhz, use:
(psbl) oclk 33

Synchronous Mode* Asynchronous Mode

SoC Name Min Freq

(MHz)

Max Freq

(MHz)

Min Freq

(MHz)

Max Freq

(MHz)

TNETD73XX 25 125 25 150

TNETV1050 25 125 25 162.5

TNETD53XX 25 125 25 125

TNETV1020 100 350 100 350

* In TNETV1020, Synchronous mode denotes MIPS-2-TO-1 mode.

See Also :
sysconf.h for default boot frequency.

3.1.3 boot

Usage : boot

Description :

Boot up an OS image from the FFS/Network. The boot image and the order of boot

is configurable with the environment variable, BOOTCFG. BOOTCFG has the

following format

<method of getting configuration>:<order of boot>:<boot-image>

The valid values are:

<m|d>:<[f][n]>:<a|”bootfile”>

‘m’ stands for manual configuration. In this case DHCP will not be invoked. All

 the configuration must be made manually.

 ‘d’ stands for DHCP configuration. All valid information that DHCP server

 provides will be taken.

 ‘f’ stands for execute image stored in Flash

‘n’ stands for boot from network using TFTP

‘a’ stands for auto boot-file configuration ie. Let the DHCP server provide the

 filename to boot. This option is invalid if ‘m’ is selected. The boot-file

 provided by DHCP server can be over-ridden by providing an alternate file-

 name in double-quotes. In case of manual configuration, provision of

 bootimage name is must.

 Boot Order

 f : boot from flash only

 n : Attempt to download the boot-image by TFTP and boot.

 fn : Attempt to boot from the flash first, if it fails, attempt to download the

 bootimage from network to flash and boot from flash.

nf : Attempt to download the boot-image from network to RAM and boot, if

 it fails, boot from flash. No update of flash is done.

 Boot File

 a : Use the boot-image name provided by DHCP server. If FFS is used, the

 boot-image name is searched in /bin directory. If FFS is not used, boot-

 image name will be treated as an environment variable of the type

 start_address,end_address . Attempt will be made to boot by

 reading the image from flash starting at start_address . If manual

 configuration is used, this option is invalid and will result in boot

 failure.

 “filename”: If FFS is used, the filename is searched in /bin directory. If

 FFS is not used, filename will be treated as an environment

 variable of the type start_address,end_address .

 Attempt will be made to boot by reading the image from flash

 starting at start_address . If DHCP is used, this option can

 be used to override the filename provided by DHCP server. If

 manual configuration is used, this option is must.

 See Also :

 setenv

3.1.4 df

Usage : df

Description :

Display raw flash device usage statistics by FFS. This command is not supported if

FFS is not present.

See Also :

ls

3.1.5 fmt

Usage : fmt [-a start_address,end_address] [Environment
Variable]

Description :

If FFS is present, this command with no arguments, formats the FFS. Following a

format, it creates the directories, /bin, /etc and /ttyS. All of the previously existing

files will be erased.

Usage of this command with no arguments in absence of FFS is invalid.

fmt can be called with –a option, in which it takes a start address and end address

and erases the flash area between those addresses.(End address excluded in case of

block aligned addresses) Eg

fmt –a 0x90200000,0x90300000

The same effect can be achieved by the use of an environment variable of the format

start_address,end_address. (both addresses in Flash) (eg 0x90200000,0x90300000).

In this case fmt will erase flash area starting at the start_address till the end_address.

 Eg.

(psbl) setenv MTD0 0x90200000,0x90300000
(psbl) fmt MTD0

See Also :
ls, setenv

3.1.6 setenv

Usage : setenv <ENV NAME> <env value>

Description :

Set/Update a system environment variable. The environment variables can be

predefined and listed in env.c . (placed in psp_boot\psbl\kernel).

Environment variables can also be created dynamically. Please note that usage of

dynamic environment variables will lead to wastage of environment space as both

the variable and the value string will be stored on the flash. It is suggested that

dynamic variables be used only for debugging/development purposes. Once the

system is ready for deployment, pre-defined variables should preferably be used.

Please note that both the environment variable and value are case-sensitive.

 The command setenv will automatically de-fragment the environment space if the

environment space is exhausted and if there is garbage left to be collected. This de-

fragmentation is however, not power-fail safe. Setting the macro

AUTO_DEFRAG_ENVIRONMENT in env.h to FALSE will turn off the auto de-

fragmentation

<ENV NAME>

Defines the name of the new Environment Variable.

<env value>

Defines the value of the new environment variable.

See Also :
unsetenv, printenv, defragenv

3.1.7 unsetenv

Usage : unsetenv <ENV NAME>

Description :

Delete an environment variable.

<ENV NAME>

Environment Variable name.

See Also :
setenv, printenv

3.1.8 ls

Usage : ls

Description :

List information about the files/directories in the FFS. In case FFS is not used, this

command is not supported.

3.1.9 cp

Usage : cp <srcfile> <dstfile>

Description :

This command copies a given file, `srcfile’ , to `dstfile’ . Both of the file

arguments should be provided with appropriate path. `cp’ can copy files from FFS to

the Serial File System and vice-versa. This command can also be used to copy files

within the Flash File System.

<srcfile>

Source filename, to copy from.

<dstfile>

Destination filename, to copy source file to.

In case FFS is not used, this command is not supported.

Example:
(psbl) cp /ttyS/app.bin /bin/app

See Also :

tftp

3.1.10 rm

Usage : rm <file>

Description :

This command removes a file from the Flash File System. Only the file node is freed

from FFS. The actual space occupied by the file being removed is not restored to

FFS. For restoring the space to FFS, de-fragmentation of FFS should be run, In case

FFS is not used, this command is not supported.

<file>

File with the whole path, to be removed.

Example:
(psbl) rm /bin/app

See Also :
cp

3.1.11 reboot

Usage: reboot

Description :

This command reboots the whole system and brings it up as during a normal power-

up reset.

3.1.12 dm

Usage : dm [<hex address> [num words]]

Description :

Display memory contents from the defined location. If the parameter num words is

not given, it dumps 128 bytes form the given address. The user can break the

memory dump and return to prompt at any time while the dump is taking place by

pressing the ESC key.

Issuing the command without any parameters will display the memory starting at the

last displayed address. If there is no last displayed address, then this command will

dump the memory starting at 0xb4000000.

hex address

Starting Address, in hex, to display the memory contents from.
num words

Defines the number of words of memory to be dumped.

3.1.13 printenv

Usage : printenv
 printenv envlist

Description :

Print all of the system environment variables, which are used. Giving the envlist

option prints all the environment variable which are listed. (All the pre-defined

variables)

See Also :

setenv, unsetenv

3.1.14 cat

Usage : cat <file>

Description :

Print file to the shell, in ASCII. In case FFS is not used, this command is not

supported.

Example:
(psbl) cat /etc/config.txt

3.1.15 help

Usage : help [cmd]

Description :

Display the list of bootloader built-in commands (when called with no arguments) or

provide help on a specified command.

[cmd]

command to fetch help on.

3.1.16 defragenv

Usage : defragenv

Description :

This command de-fragments the environment space. De-fragmentation

involves removal of obsolete (deleted or updated) environment entries. This

command is not completely power fail-safe and should be used with caution.

3.1.17 ftp

Usage : ftp [-b] net_file env_var
 ftp -p

Description :

This command transfers a file from the host machine to the raw flash using the

File Transfer Protocol. net_file is the name of the file to be fetched from

the remote machine. env_var is an environment variable which has a value

of the form start_address,end_address. (both addresses in Flash) (eg

0x90200000,0x90300000). ftp will fetch the remote file and burn it in the

flash starting at the address specified in the environment variable.

(start_address)

CAUTION: This command should not be used with FFS as this will corrupt

the installed FFS.

The ftp command depends on environment variables for relevant

network/authentication related information. They are:

§ HWA_[0|1] : System MAC address.

§ IPA : System IP address.

§ IPA_SVR : Target (or FTP server) IP address, running FTP

server.

§ IPA_GATEWAY: The IP Address of the Gateway for the subnet in

which the target is present.

§ SUBNET_MASK: The Subnet Mask for the subnet in which the

target is present.

§ REMOTE_USER: The user name on the remote machine.

§ REMOTE_PASS: The password on the remote machine. Stored in

an encrypted format.

§ REMOTE_DIR: The directory on the remote machine in which the

remote file is present

§ MAC_PORT : The active MAC port number.

[-b]
This option checks if the start_address passed to the ftp command (through

env_var) is block aligned or not. If not block aligned, ftp when used with –

b option returns error.

-p
When FTP is called with this option, it prompts for the remote password

and stores it in an encrypted format.

3.1.18 fa

Usage : fa

Description :

This command prints the flash memory allocation information. While printing

the allocation for the bootloader, it prints the exact size of the bootloader

instead of printing the size rounded to the nearest block. This provision helps

determine the PSPBoot image size exactly.

The allocations for PSPBoot image, the environment space and FFS (if

compiled in) are shown by default. Also information about amount of

unallocated (free) space in flash is displayed.

3.1.19 info

Usage : info

Description :

This command prints the SoC name and revision number. It also displays

various SoC related information like Cache size etc.

3.1.20 version

Usage : version

Description :

This command will print the PSPBoot version, build information and the

optional modules included.

4 SYSTEM ENVIORNMENT VARIABLES

The environment variables supported in the system provide means for configuration data

retention across power-cycles as well as parameter sharing between bootloader and it's

applications (OS inclusive). These variables are stored as a sort of file system on the

Flash, in a contiguous erasable block.

This document cover the APIs required to configure and initialize the environment

variables, describes how to add a new pre-defined variable for the system.

4.1 Customizing Environment Support

The location of the Flash Erase Block(s) where environments will be stored is determined

by configuration using the Flash Memory Manager.

The Flash Memory manager will allocate a minimum of one erase block for storing the

environment variables. Configuration can however be made to store environment variables

only in a part of the block allocated. For making such a configuration, the macro

‘ENV_SPACE_SIZE’ in ‘inc/psbl/env.h’ should be set to the size of the environment

space required. PSPBoot will not touch the remaining space in the erase block allocated. It

can be used to store any application specific information. For Example, the NSP

configuration is stored in such a manner.

Configuration can also be made to de-fragment the environment space automatically after

the environment space fills up. This de-fragmentation is carried out only when an attempt

is made to set an environment variable (See setenv). After the de-fragmentation, the set

command is called again with same set of arguments. This de-fragmentation is carried out

only if there is garbage left to be collected. By default auto de-fragmentation of

environment space is turned on. To turn it off set the macro AUTO_DEFRAG_ENVIRONMENT

in ‘inc/psbl/env.h’ to FALSE.

4.2 Environment API List

4.2.1 sys_initenv

Name: sys_initenv - initialize the environment variables module

Synopsis:
#include <env.h>

int sys_initenv(void);

Description:
This function validates the environment existing on the system, and if successful,

initializes the internal data structures for access to the environment variables.

This routine should be called before using the environment variables.

Return Value:
Upon successful execution, SBL_SUCCESS is returned.

Errors:
SBL_EINVALID:

The environment file system is not of PSP Bootloader type. Under such

conditions, environment variables cannot be used. The bootloader should be run

again to install the appropiate environment type.

4.2.2 sys_setenv

Name: sys_setenv - update an environment variable

Synopsis:
#include <env.h>

int sys_setenv(char *env_var, char *val);

env_var: Environment variable to be created.
val: Environment variable value, as string.

Description:
The sys_setenv() will update an environment variable of the system. The

variable, identified with env_var will be set to value to which val points. If

env_var was not created earlier, this call will create a new instance of it. Else, if the

new val is different from the existing value, it will delete the earlier value and

configure the variable to point to the new value, val .

The string supplied by val will be copied by this routine.

sys_setenv() is not re-entrant. Care should be taken by the caller to support

thread-safe execution.

Return Value:
Upon successful execution, SBL_SUCCESS is returned.

Errors:
SBL_ERESCRUNCH:

Insufficient memory in environment variables file system. Run the bootloader and

defragment the environment space.

SBL_EINVALID:

Either sys_initenv() is not executed or the environment variable type is

undefined. Refer to error SBL_EINVALID description in sys_initenv() .

SBL_EFAILURE:

This identifies a Checksum error or data abuse or data corruption of the

environment file system. On such error, sys_setenv() will not successfully

execute. Run the PSP bootloader to format and install it's environment file

system.

4.2.3 sys_getenv

Name: sys_getenv - get value of an environment variable

Synopsis:
#include <env.h>

char *sys_getenv(char *env_var);

 env_var: Environment variable.

Description:
The sys_getenv() function will search the environment variables file system for

the given variable, env_var, if it exists and return a pointer to the value of the

same. If the specified variable cannot be found, a null pointer will be returned.

The value, returned as a string, should not be modified by the caller. On doing so, the

behavior is undefined. Instead, the caller should copy the string to another location

for any processing.

sys_getenv() is not re-entrant. Care should be taken by the caller to support

thread-safe execution.

Return Value:
Upon successful completion, sys_getenv() will return a pointer to the string

containing the value of the specified env_var . If the specified env_var cannot be

found on the environment file system or not defined in the list of supported

environment variables for this system, it will return a NULL pointer.

4.2.4 sys_unsetenv

Name: sys_unsetenv - delete an environment variable

Synopsis:
#include <env.h>

char *sys_unsetenv(char* env_var);

 env_var: Environment variable identifier.

Description:
The sys_unsetenv() function will remove an environment variable, env_var ,

from the environment file system. If the environment variable is not listed for system,

then the environment file system will remain unchanged and the function is

considered to have completed successfully.

sys_unsetenv() is not re-entrant. Care should be taken by the caller to support

thread-safe execution.

Return Value:
Upon successful execution, SBL_SUCCESS is returned.

Errors:
SBL_EFAILURE:

This identifies a Checksum error or data abuse or data corruption of the

environment file system. On such error, sys_setenv() will not successfully

execute. Run the PSP bootloader to format and install it's environment file

system.

SBL_EINVALID:

Either sys_initenv() is not executed or the environment variable type is

undefined. Refer to error SBL_EINVALID description in sys_initenv() .

4.2.5 sh_printenv (shell command)

Name: sh_printenv - dump the environment variables on the shell

Synopsis:
#include <env.h>

int sh_printenv(void);

Description:
The sh_printenv routine prints all of the environment variables for the system on

the shell. This is targeted for the debug environment.

Return Value:
Upon successful execution, SBL_SUCCESS is returned.

Errors:
SBL_EINVALID:

Either sys_initenv() is not executed or the environment variable type is

undefined. Refer to error SBL_EINVALID description in sys_initenv() .

4.3 Pre-defined Environment Variables

Following is the list of the environment variables supported for the system. Some of these

environments may not be available based on the SoC for which PSPBoot is compiled.

CPUFREQ CPU Frequency (Read Only).

SYSFREQ System Frequency (Read Only)

MEMSZ System Memory Size. If this variable i s found to be

 unset at boot-time, it will be set to the value t aken
 from sysconf.h

FLASHSZ System Flash Size. If this variable is found to be

 unset at boot-time, it will be set to the value t aken
 from sysconf.h

MODETTY0 Serial Port 0 Working Mode.

The mode parameters comprise of baud rate, parity,
data bits, stop bits and flow-control mechanism. Fo r
a port configuration of 9600 baud, no parity, 8 dat a
bits, 1 stop bit and hardware flow-control, it shou ld
be configured as: 9600,n,8,1,hw. If this variable i s
found to be unset at boot-time, it will be set to a
default value of 9600,n,8,1,hw.

MODETTY1 Serial Port 1 Working Mode.

Format is the same as for MODETTY0.

PROMPT Bootloader shell prompt. This variable is read at

 boot-time only. If this variable if found to be u nset
 at boot-time it will be set to default value of
 “psbl”

BOOTCFG Boot Configuration.(find more details in

 documentation of ‘boot’ command)

HWA_0 Hardware Address for the first Etherne t MAC

interface.

The delimiters for the octects can be any of “.-:_”
(excluding the double quotes), for example:
 00.e0.a6.66.39.54

HWA_1 Hardware Address for the second Ethern et MAC

 interface.

HWA_RNDIS Hardware Address, for RNDIS interface. (Target side)

HWA_3 Hardware Address, for Ethernet-over-AT M interface.

HWA_HRNDIS Hardware Address, for RNDIS interface. (Host side)

IPA System IP Address.

IPA_SVR TFTP/FTP Server IP Address.

IPA_GATEWAY Target’s Gateway IP address.

SUBNET_MASK Target’s Gateway IP address.

BLINE_MAC0 Bootline ascii string for VxWorks with initialization

parameters for CPMAC-0 interface.

These parameters hold boot device name, unit number ,
internet addresses for the host and the interface,
network mask, user name and password.

A sample BLINE_MAC0 string is:
cpmac(0,0)host:file h=192.138.139.235 e=192.138.139 .
81:FFFFFF00 u=titan pw=titan

BLINE_MAC1 Bootline parameters for CPMAC-1 interf ace.

A sample BLINE_MAC1 string is:
cpmac(1,0)host:file h=192.138.139.235 e=192.138.139 .
82:FFFFFF00 u=titan pw=titan

BLINE_RNDIS Bootline parameters for RNDIS interfac e.

A sample BLINE_RNDIS string is:
rndis(2,0)host:file h=192.138.139.235 e=192.138.139 .
83:FFFFFF00 u=titan pw=titan

BLINE_ATM Bootline for ATM interface.

BLINE_ESWITCH Bootline for Eswitch.

USB_PID Product ID of USB device. (16-bit valu e)

USB_VID Vendor ID of the USB device. (16-bit v alue)

USB_EPPOLLI USB Endpoint Polling Interval, in mill iseconds. This

is the polling rate for device interrupts.

USB_SERIAL Serial number of USB device.

REMOTE_USER User Name on the remote system (for FTP)

REMOTE_PASS User password on remote system (for FTP)

REMOTE_DIR Directory on the remote system (for FTP)

LINK_TIMEOUT Time in seconds to wait for the link t o come up

before starting DHCP.

MAC_PORT The Active MAC port number. Valid values : 0 and 1

PATH The path in FFS to search for application to e xecute.

This variable should consist of directories in FFS
separated by ‘:’ Example /bin:/dev/ttyS0. This
variable is read at boot time only. If at boot-time
this variable is found to be undefined, it takes a
default value of “/bin:/dev/ttyS0”

HOSTNAME The hostname for the Target.

TFTPCFG Configure the timeout and retransmission co unt of

TFTP client. The configuration is of the form:
 <Time-out (seconds)>: <Retransmissions Count>
 For Example, TFTPCFG value of 6:5 denotes that the timeout
is 6 seconds and the retransmissions count is 5. If this variable
is not set or not set properly, the default configu ration is
taken. The default time-out is 5 seconds and the de fault
retransmissions count is 5. Set of valid values for time-out and
retransmissions count is positive integers greater than zero. Care
should be taken while setting the TFTPCFG variable. It should be
set taking into account the timeout and retransmiss ion values at
the server side. A mismatch might result in one of the sides
waiting for transfer while the other times out.

4.4 Adding Environment Variables

4.4.1 Adding new pre-defined environment variables

The bootloader supports pre-defined environment variables. Every environment is

referenced by a unique index, common across the system. This indexing is supported by

using the enumerator data type of C.

The file, env.c should be common across PSP bootloader and OS and any other

application running on the system. This is since the environment file system is a shared

global resource.

Following are the steps for adding a new pre-defined environment variable.

NOTE: Steps 1 and 2 are for adding a new environment of the PSP Bootloader type.

1) Add the environment variable name in the enumeration data type, ENV_VARS, in file

env.c. Care should be taken that the new variable name is added to the end of the

ENV_VARS, immediately before the enumerator env_vars_end. This allows intact pre-

defined environment variables and assigning a new unique value for the added variable.

To use the added environment variable with the APIs sys_setenv(), sys_getenv(),

sys_unsetenv(), use the new enumerator name as a string.

2) Add the new environment enumerator name in the array, env_ns, in env.c, using the

macro _ENV_ENTRY. This macros provides a lookup for the respective name string for

the environment. This entry in the env_ns can be added anywhere and there is no

positioning requirement. The last entry in this array should always be _ENV_ENTRY(0).

This support is mainly for the shell support for set and print of environments.

4.4.2 Adding new dynamic environment variables

Addition of dynamic variables is fairly simple. A new dynamic variable can be added by

using the setenv command of the bootloader and supplying a variable name and value.

Dynamic variables are to be used with caution as they are less space efficient than pre-

defined ones. They are meant for ease of use in development stage. Once the system is in

deployment stage, it is highly recommended to convert all the finalized environment

variables into pre-defined ones.

5 FLASH FILE SYSTEM (FFS)

5.1 API List

5.1.1 ffs_init

Name: ffs_init - Initialize the Flash File System

Synopsis:
#include <ffs.h>

int ffs_init(void);

Description:
The ffs_init routine is used to initialize the FFS before using it.

Return Value:
This always return with 0, indicating successful operation.

5.1.2 ffs_fopen

Name: ffs_fopen - open a file on FFS

Synopsis:
#include <ffs.h>
FFS_FILE *ffs_fopen(const char *filename, const char
*type);

filename: File name to open (string)
type: Mode of file operation (string)

Description:
The ffs_fopen routine initializes the data structures required for file operations. Two

fundamental kinds of access are provided: read and write. `type' must begin with

either of "r" or "w", to select either for read or write operation, respectively.

This returns a file pointer for usage on every subsequent reference to the opened file.

Append mode is not supported.

Returns:
Upon successful execution, a file pointer of type FFS_FILE will be returned. On

failure, it returns with NULL.

5.1.3 ffs_fread

Name: ffs_fread - read array elements from an FFS file

Synopsis:
#include <ffs.h>

size_t ffs_fread(void *ptr, size_t size, size_t nitems,
FFS_FILE *stream);

ptr: Memory pointer, to copy read data to.
size: Size of each element to read.
nitems: Number of elements to read.
stream: File pointer, identifying the file to read

from.

Description:
`ffs_fread' reads `nitems' number of elements, each of size `size', to the memory

pointed to by `stream'. `ffs_fread' may copy fewer elements than `nitems' if an error,

or end of file occurs. `ffs_fread' also advances the file position indicator in it's FCB

by the actual number of elements read.

Returns:
It returns the number of elements read. Upon error or EOF, it returns 0, indicating

zero elements read.

5.1.4 ffs_fwrite

Name: ffs_fwrite - write array elements to an FFS file

Synopsis:
#include <ffs.h>
size_t
ffs_fwrite(const void *ptr, size_t size, size_t nitems,
FFS_FILE *stream);

ptr: Memory pointer, to copy data from.
size: Size of each element for write.
nitems: Number of elements to write.
stream: File pointer, identifying the file to write

to.

Description:

`ffs_fwrite' attempts to copy `nitems' number of elements, each of size `size', starting

from memory location `ptr' to the file, `stream'. `ffs_fwrite' may write fewer elements

than requested if an error occurs. `ffs_fwrite' will also advance the file position

indicator in it's FCB by the actual number of elements written.

Returns:
Number of elements written. On an error, it returns 0.

5.1.5 ffs_fseek

Name: ffs_fseek - set file position

Synopsis:
#include <ffs.h>

int ffs_fseek(FFS_FILE *stream, bit32 offset, int
ptrname);

stream: FFS file pointer.
offset: New position offset.
ptrname: Mode of `offset' usage.

Description:
`ffs_fseek' sets the file position indicator in it's FCB, defined by `offset'. The different

referencing modes are:

FFS_SEEK_SET: `offset' is the absolute file position desireable.

FFS_SEEK_CUR: `offset' is relative to the current file position.

FFS_SEEK_END: `offset' is relative to the current end of file. `offset' can be

either positive or negative.

Returns:
Upon successful operation, it returns 0. On failure, it returns EOF.

5.1.6 ffs_fclose

Name: ffs_fclose - close a file

Synopsis:
#include <ffs.h>
int ffs_fclose(FFS_FILE *stream);

stream: FFS file pointer.

Description:
`ffs_fclose' closes an FFS file `stream' if already open, after ensuring that any pending

data is returned.

Returns:
When successful, it returns 0. Otherwise, it returns EOF.

5.1.7 ffs_remove

Name: ffs_remove - delete an FFS file

Synopsis:
#include <ffs.h>
int ffs_remove(const char *filename);

filename: File to be removed (string)

Description:
`ffs_remove' deletes a file from the FFS file system. Following a remove, the file will

no longer be accessible.

Returns:

On success, it returns 0. Else, it returns -1.

6 ENVIRONMENT AND FFS SUPPORT FOR OPERATING
SYSTEMs

Since PSPBoot is meant to cater to various Operating Systems (like VxWorks, Linux and

WinCE), a set of files for the environment variables and flash file system, will be provided

which require to be pulled in and compiled with the respective compiler suite of the

particular OS.

Here is the list of files to be compiled in for Environment and FFS support. These files can

be soft-linked into the OS VoB from the psp_boot VoB. psp_boot VoB will contain a

directory named ‘export ’ which will contain links (within ‘psp_boot ’ VoB) to files

required to be compiled in the OS kernel for environment and FFS support. The directory

‘inc ’ within the ‘export ’ directory contains the header files containing the interfaces for

environment and FFS access.

File Name
Required to

Support
inc\psbl\debug.h ENV and FFS
psbl\kernel\env.c ENV
inc\psbl\env.h ENV
inc\psbl\errno.h ENV and FFS
inc\psbl\flashop.h ENV and FFS
psbl\kernel\flashop_xx.c [Board dependent] ENV and FFS
inc\psbl\hw.h ENV and FFS
platform.h [To be provided by the OS] ENV and FFS
Platform.c [To be provided by the OS] ENV and FFS
Psbl\kernel\shell.h ENV and FFS
inc\psbl\stddef.h ENV and FFS
inc\psbl\sysconf.h ENV and FFS
Psbl\kernel\fcb.c FFS
Psbl\kernel\ffs.c FFS
Psbl\kernel\ffs_extra.c FFS
Psbl\kernel\ffs_extra.h FFS
Psbl\kernel\fcb.h FFS
inc\psbl\mod.h FFS
inc\psbl\ffs.h FFS
inc\psbl\stdio.h FFS

These files should be included in the OS sources and compiled into the OS kernel.

For initializing the Environment support, sys_initenv() should be called.

This call should be made before Environment/Flash File System support is used.

The file env.c has an external dependency on the OS to provide it with mutual exclusion

primitives for serializing Flash access (Read or Write). The functions

int enter_critical_section() and int exit _critical_section() should be

defined by the OS (preferably in platform.c). These primitives when defined, will ensure

that there is only a single process reading or writing to the flash at any point of time.

Please note that this support is available only for Environment variables and not for flash

file system. If such a (mutual exclusion) facility is not required, then these routines can be

defined to be empty routines.

The file platform.h is used to provide any OS dependent defines for compiling the

PSPBoot files. For Example, for VxWorks, platform.h should define sys_printf (print

function in PSPBoot) to printf. (print function in vxWorks) .

The files platform.c and platform.h will not be provided in PSPBoot VoB and will

have to be maintained along with the OS sources.

Care should be taken not to define the macro _STANDALONE while compiling the

bootloader sources. This macro is defined only when compiling PSPBoot and is used in

the code to decide the context. (OS or bootloader).

Also note that it is not mandatory to use both the environment and FFS support together.

For example, Linux currently uses only environment support and not FFS support.

7 DHCP SUPPORT

PSPBoot has DHCP client support that is used to get the system IP address, subnet mask,

gateway address (router), boot-file name and the TFTP server IP address.

DHCP support is enabled using the BOOTCFG environment variable. For more details on

enabling DHCP using the BOOTCFG environment variable please look at documentation

on BOOTCFG in the description of ‘boot’ command.

The DHCP client sends a broadcast request to the DHCP server(s) in the same subnet

requesting IP address, gateway IP address, boot-file name and TFTP server name. The

DHCP server must be configured correctly to provide this information to the DHCP client.

If the boot configuration (using BOOTCFG) requires that the boot-file be downloaded

from network, DHCP server must provide the correct “boot-file name” as well as the “next

server IP address” else the OS boot will fail. If DHCP server provides the “next server IP

address” as 0.0.0.0 then IPA_SVR is not set and this configuration is ignored. Similarly,

“boot-file name” of NULL value is ignored. In such cases, the DHCP server’s

configuration should be reviewed.

The “Vendor class identifier” sent by the DHCP client in PSPBoot 1.1 is “TI-dhcp 0.1”.

The hostname sent by the target during the DHCP process is taken from the environment

variable HOSTNAME. If HOSTNAME variable is not present, a default value (value

depending on the board for which PSPBoot is compiled) is sent.

DHCP request is sent out only when a reboot is done. The environment variable

LINK_TIMEOUT is used to specify the time in seconds to wait for the link to come-up

before starting the DHCP process.

References:

RFC 2131

RFC 2132

8 BOOTLOADER CUSTOMIZATION

8.1 Application Support: Extending Bootloader Functionality.

8.1.1 Introduction

A PSPBoot application is an independent program written to be executed in PSPBoot

context. Applications are mainly used to extend the functionality of PSPBoot.

Applications are developed and built using the application framework provided by

PSPBoot. The application framework consists of defining the memory map for the

application, creation of C-Runtime environment for application execution and a makefile

for compiling the applications.

8.1.2 Application interface to PSPBoot

PSPBoot provides a number of pre-defined entry points into the bootloader to the

applications. These entry points enable the application to use a number of bootloader

features. It also reduces the size of the applications by reuse of routines that already exist

in the bootloader context. These entry points are termed as SRRs (System Resident

Routines). The application is compiled along with a library of SRRs (libsrr.a) that

helps the application jump to the appropriate location whenever an SRR is invoked. Thus

SRRs can be invoked just like any normal function. The linkage to bootloader context is

taken care by the application framework through the SRR Library. The list of currently

supported SRRs can be found in the file inc\apps\srr.h in the source tree

8.1.3 Writing applications for PSPBoot

The sources for all the applications written for PSPBoot should be kept in apps\src

directory. The Application will start executing at a function called mymain . This function

is a must for all applications. A template application is provided in the file

apps\src\template.c. This file can be taken as a starting point for all new

applications.

8.1.4 Compiling applications for PSPBoot

To compile an application spanning only one C source file, the source file name should be

added to the APPS_SRCS_C list in apps\makefile . For example, if the source file is

app.c , the application can be complied by issuing the command: make app.

To compile an application spanning multiple C/Assembly source files, a new rule should

be created which will compile all the C and Assembly files related to the application.

Also, this rule should be added as a dependency for the ‘all’ rule. To build all the

applications supported, use make all.

8.1.5 Sample applications

The following sample applications are provided.

8.1.5.1 im: inspect memory

This application is used to read and modify memory

Usage: im [-b | -h | -w] [Hexadecimal Address]

This application takes an optional hexadecimal address and displays the contents of that

memory location. If no address is provided the inspection starts at 0xb400’0000 . The

application advances to next address when return key is pressed. Pressing the ‘-‘ key

goes to the previous address. To exit the application, ‘.’ key should be pressed.

[-b] Inspect memory byte-wise.

[-h] Inspect memory half-word wise.

[-w] Inspect memory word wise. (default)

8.1.5.2 update: update bootloader using TFTP.

This application is used to update the bootloader using TFTP.

Usage: update [-est] <bootfile-name>

This application takes a bootfile and burns it at 0xb000’0000 (start of flash) after

downloading it through TFTP. The bootfile should be a flat binary file for flash download.

If the bootfile being downloaded is a flat binary image obtained through the VisionClick

“convert” utility, -est should be used to indicate this.

8.1.5.3 defrag: de-fragment the Flash File System.

This application is used to de-fragment the Flash File System. De-fragmentation of the

Flash File System physically frees up the space used by the deleted files in the FFS.

Usage: defrag [-h | -r | -v]

[-h] Prints help information and quit.

[-r] Just report the amount of space that can be freed and quit.
[-v] Run the tool in verbose mode

8.2 Flash Memory Manager: Allocating Sections in Flash

Flash Memory manager (FMM) is designed to facilitate easy and optimum use of flash.

Certain Intel and AMD flash types have ‘Tiny’ blocks built into them. The ‘Tiny’ blocks

are small blocks – typically 4K or 8K or 16K in size – that are present so that wastage of

space in a large segment due to storage limitations of flash can be avoided.

These tiny blocks are typically used to store system environment variable, configuration

data etc.

In PSPBoot1.1, all the allocation of flash memory – including that for Environment

Variables, Flash File System and the bootloader itself – is done through the Flash Memory

manager.

The FMM module mainly exposes two interfaces:

FMMSetSectionInfo: This interface is used to allocate a section in flash at a

specified location in flash, overriding the Flash memory manager’s allocation algorithm.

For example, bootloader is always allocated a section at the base of flash irrespective of

the tiny block position using this API.

FMMAllocateSection: This interface is used to allocate a section in flash based on

Flash Memory manager’s allocation algorithm. Flash memory manager always allocates

the ‘tiny blocks’ first. Hence if a section (like environment space) has to be allocated ‘tiny

blocks’ on a higher priority over another section (like FFS), it should be allocated space

first.

To get the minimum block allocated, a size of 1 byte can be specified. To get all the

currently free space allocated, a size equal to size of Flash can be requested.

Each section is identified by a unique string literal (tag). The tags for the bootloader,

Environment space and FFS are fixed and should not be changed. Users are free to use

their own tags (max length 10) for the user defines sections.

The allocation of all sections takes place under a single API FMMConfigSections in

file fmm.c . Allocation of new sections should be done under this function.

8.3 BU specific Hooks

The following hooks are provided for BUs to add their own code at various points if

initialization/execution.

1. void psbl_asmhook_init1 (void)

This is an assembly hook function that gets called immediately after the processor

initialization. The SoC is not yet initialized. A sample usage of this hook is similar to the

usage with TNETD7300 where the power comparator requires to be turned on as early as

possible in the bring-up process to save the board from any rapid power fluctuations.

2. void psbl_asmhook_init2 (void)

This is an assembly hook function that gets called after the SoC initialization. At this

stage, the processor and SoC is initialized and basic POST is executed successfully.

Functionalities like extended POST, SOC workarounds and some hardware bug fixes can

be performed here.

3. void psbl_chook_init3 (void)

This hook is present at the same stage as psbl_asmhook_init2 but allows the hook

to be written in C language.

4. void psbl_chook_init4 (void)

This is a C function that will be called after the system is brought up and before executing

the shell engine. At this stage, the whole of the system is up, with environment variables

configured with the board specific information, serial driver/network drivers installed, and

CPU/System frequencies configured. Any functionality that can be executed via a

command can be installed here.

5. void psbl_chook_poll (void)

This is a C fun ction that will be called periodically when the shell engine is running. This

hook can be used, for example, to periodically poll the status of any device/module and

execute, if any, and call a user defined function under any given condition.

8.4 EMIF configuration

EMIF configuration for PSPBoot can be done in a flexible manner for AR7, TNETV1050

and TNETV1020 platforms.

The file inc/emif.h includes a board specific include file. The board specific file

contains set of definitions for different parameters for SDRAM and Asynchronous banks

of the SoC. These definitions can be changed to suit any particular modifications in EMIF

settings that may be required.

8.5 Miscellaneous Customizations

8.5.1 Secondary Flash Support

PSPBoot has the capability to support two discontinuous (referred to as primary and

secondary) flash devices. The Flash File System is implemented to show both the devices

as a single unit. Use the Makefile (\psp_boot\Makefile) option –DDUAL_FLASH to

enable this support.

Notes:

1. PSPBoot requires the definition of SEC_FLASH_BASE when Dual Flash option is

chosen. This definition has to be according to where the secondary flash resides. The

primary flash is always assumed to start at CS0

2. PSPBoot assumes that both the flash devices are of same type. That is, the same flash

driver can operate on both the devices.

3. PSPBoot assumes that the flash driver is aware of the existence of the secondary flash

device.

9 KNOWN LIMITATIONS

- The PSP Bootloader depends on sead1.exe on host machine for serial

download.

- The ftp command should not be used with FFS installed.

- PC application is supported only in Little Endian mode.

For a full set of known limitations for a particular release, please refer to the Release

Notes of that release.

