
Firmware validation
The logic to validate the firmware bundle begins at: libupg_validate_firmware_mem .

This is called from libupg_upgrade_mem that is subsequently called from the command upgrade in
the psbl terminal.

This can be seen from the upgrade command handler:

A couple of things to note from this snippet:

[1] Shows the data is being obtained through tftp (wtf)
We can see the address [2] 0xb4500000 being passed into libupg_upgrade_mem . This will be
the location that the firmware is either downloaded to or where we will begin flashing.

libupg_validate_firmware_mem

int upgrade(int argc,char **argv)
{
 int iVar1;
 undefined4 *param2;

 if ((argc == 2 || argc == 4) && ((argc != 4 || (iVar1 = strcmp(argv[1],"-i"), iVar1 == 0)))) {
 *argv = "upgrade";
 argv[argc] = "/dev/ram";
 param2 = (undefined4 *)tftp(argc + 1,argv); // [1]
 if (0 < (int)param2) {
 iVar1 = libupg_upgrade_mem((astruct *)0xb4500000,param2); // [2]
 return iVar1;
 }
 }
 else {
 upgrade_usage();
 }
 return -1;
}

The function starts by taking two arguments:

param1 is the pointer into RAM discussed above (0xb4500000)
param2 is the result from tftp (Looks like it is being used as a data length)

The function begins by validating the firmware's header.

Header validation
The header validation can be found in function validate_firmware_header .

The function starts by taking a structure (we're going to call it firmware_header_struct).

The function contains two stages:

Digest validation
Randseq validation

Information regarding the "header format" has been split into a separate page. Please see
Firmware format for more information. The rest of this section wiill use terminology sourced from it.

Digest validation
To calculate the digest you perform the following:

1. Zero out the Signature
2. Zero out the Digest
3. MD5 hash of the firmware header and module header table.

The size of the headers is calulcated with the formula below:

The process listed above can be seen in the following tidy Ghidra decompilation (Note: The size
parameter is the one calulcated above)

int libupg_validate_firmware_mem(byte *param1,uint param2)
[...]

size = hdr->FirmwareHeaderSize + hdr->NumberOfModules * hdr->ModuleHeaderSize;

https://wiki.jacknet.io/books/cisco-spa504g/page/firmware-format

Randseq validation
To calculate the Randseq perform the following:

Zero out the Signature, Digest and Ranseq elements of the header
Perform the nsdigest on the same data as the MD5 digest above. nsdigest does the
following:

For each 0x20 sized block in the firmware header and module header table:
For each byte:

int gen_fmhdr_digest(void *md5_struct_out, firmware_header_struct *fm_hdr, size_t size) {
 byte *pDigest;
 byte *pSignature;
 astruct_1 MD5Buffer [3];
 undefined lSignature [32];
 undefined lDigest [16];

 // Save signature and digest
 pSignature = fm_hdr->Signature;
 memcpy(lSignature,pSignature,0x20);

 pDigest = fm_hdr->Digest;
 memcpy(lDigest,pDigest,0x10);

 // Zero signature and digest
 memset(pSignature,0,0x20);
 memset(pDigest,0,0x10);

 // MD5 time
 MD5Init(MD5Buffer);
 MD5Update(MD5Buffer,fm_hdr,size);
 MD5Final(md5_struct_out,MD5Buffer);

 // Restore signature and digest
 memcpy(pSignature,lSignature,0x20);
 memcpy(pDigest,lDigest,0x10);
 return 0;
}

Get the value from the byte array and add a special counter. Place this
result of the addition into a temp buffer array
Increment counter by 0x19

Pass the 32 byte arrary into MD5Update
Repeat until all bytes have been processed

This process can most clearly be seen with the following Python script:

import hashlib

SIGNATURE_OFFSET = 16
DIGEST_OFFSET = 48
RANDSEQ_OFFSET = 64

def memset(data, start, size):
 temp_data_mutable = list(data)

 for i in range(size):
 temp_data_mutable[start+i] = 0

 return bytes(temp_data_mutable)

def nsdigest(data, size):
 data_index = 0
 addition_value = 0
 buf = [0] * 0x20

 md5 = hashlib.md5()

 while True:

 buffer_index = 0

 while True:
 buf[buffer_index] = (data[data_index] + addition_value) & 0xff

 addition_value += 19
 buffer_index += 1
 data_index += 1

 if buffer_index >= 0x20 or data_index >= size:
 break

 md5.update(bytes(buf))

 if data_index >= size:
 break

 return md5.digest().hex()

def main():

 with open("spa50x-30x-7-6-2g.bin", "rb") as f:
 data = f.read()

 # Calculates the size of the headers
 size = 0x80 + (0x4f * 0x40)

 data = memset(data, SIGNATURE_OFFSET, 32)
 data = memset(data, DIGEST_OFFSET, 16)
 data = memset(data, RANDSEQ_OFFSET, 16)

 x = nsdigest(data, size)
 print(x)

if __name__ == "__main__":
 main()

Revision #12
Created 30 March 2022 17:06:07 by Aidan
Updated 3 April 2022 17:52:07 by Aidan

