
Wii
Interestingly-named home Nintendo console that everyone's aunt bought for Christmas 2007

Getting Started
How do I ...?

Check controller input?
Do networking?
Draw to the screen?

RFCs

In game client to server controls

Getting Started
Wii homebrew is compiled using devkitpro, specifically devkitPPC. It compiles to a boot.dol and a
boot.elf file, we're more interested in the first.

Repository Setup
Use the wii-template template repository to create your git repo. You can either click the "Use this
template" button, or select "alex/wii-template" from the "Template" dropdown when making a
repository. The template includes:

The example hello world application from devkitpro.
The devkitpro example Makefile, modified to always output a file named boot.dol for the
Homebrew Channel.
A Jenkinsfile that will build your code using the Makefile in the devkitppc Docker container.
The icon.png and meta.xml files needed for the Homebrew Channel.

Local Compilation
Most sources online recommend you install devkitpro locally, so that's definitely an option. Nobody
really mentions the Docker container, but if you want you can use that locally too, using the
following command from the project root directory:

This will output your boot.dol and boot.elf to the same folder.

Emulating Your Code
You can quite eaisly run your code in the Dolphin emulator, just go to "Open" and select your
boot.dol file.

Homebrew Channel Installation
To get the code running on an actual Wii, you need to install it to the Homebrew Channel.
Applications are installed to the apps folder in the root of your SD card, each application has its
own folder. Just put your boot.dol , meta.xml and icon.png in a new folder in the apps folder, and you
should be good to go.

docker run -it --rm -v $(pwd):/src devkitpro/devkitppc bash -c 'cd /src; make'

https://devkitpro.org/wiki/Getting_Started
https://git.jacknet.io/alex/wii-template
https://hub.docker.com/r/devkitpro/devkitppc
https://dolphin-emu.org/

The meta.xml describes what appears in the menu for your application in the Homebrew Channel.
Its fields are documented on wiibrew, here.

The icon.png is the application's icon in the Homebrew Channel. Wiibrew says it should be 128x48
pixels (see here), and provides a seperate page with a lot of templates.

https://wiibrew.org/wiki/Homebrew_Channel#Configuring_Applications
https://wiibrew.org/wiki/Homebrew_Channel#Adding_an_Icon
https://wiibrew.org/wiki/Homebrew_Channel_icons

How do I ...?

How do I ...?

Check controller input?
First you need to called WPAD_Init() ! It is defined in wiiuse/wpad.h

Wii Remote
WPAD stores information on Wii Remote controllers in WPADData structs, which you can get a
pointer to with the WPAD_Data(chan) function. The chan parameter is presumably the player
number? But zero-indexed. The structure is defined as follows:

Rather then read from the struct directly, I think the WPAD developers would prefer you use helper
functions for pulling out individual fields, such as button states. These functions are:

u8 WPAD_BatteryLevel(int chan)
u32 WPAD_ButtonsUp(int chan)
u32 WPAD_ButtonsDown(int chan)
u32 WPAD_ButtonsHeld(int chan)
void WPAD_IR(int chan, struct ir_t *ir)

typedef struct _wpad_data
{
	s16 err;

	u32 data_present;
	u8 battery_level;

	u32 btns_h;
	u32 btns_l;
	u32 btns_d;
	u32 btns_u;

	struct ir_t ir;
	struct vec3w_t accel;
	struct orient_t orient;
	struct gforce_t gforce;
	struct expansion_t exp;
} WPADData;

void WPAD_Orientation(int chan, struct orient_t *orient)
void WPAD_GForce(int chan, struct gforce_t *gforce)
void WPAD_Accel(int chan, struct vec3w_t *accel)
void WPAD_Expansion(int chan, struct expansion_t *exp)

Buttons
Buttons can either be up, down, or held. Presumably buttons transition from being down when
initially pressed, to held, to up when released. The u32 values returned from the button functions
contain the state of each button on the controller, and access masks are provided to query
individual values. For example, to test if the HOME button is pressed:

The full list of available buttons includes everything on the Wii Remote, the two additional buttons
on the Nunchuck, all of the Classic Controller buttons, and all of the Guitar Hero buttons. They are
all defined here.

References
wpad.h and wpad.c.

#include <wiiuse/wpad.h>

bool home_button_pressed(int chan)
{
 return (WPAD_ButtonsDown(chan) & WPAD_BUTTON_HOME > 0);
}

https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/gc/wiiuse/wpad.h#L49
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/gc/wiiuse/wpad.h
https://github.com/devkitPro/libogc/blob/master/wiiuse/wpad.c

How do I ...?

Do networking?
Work-in-progress page, just wanted to capture some trickiness Jack came across.

In net_bind() , IPPROTO_TCP as the third parameter gives the cryptic error -81, which is not
really defined anywhere. This really needs to be IPPROTO_IP instead.
Get your port number right!

Example
int32_t listen_tcp(uint16_t port)
{
 // Create server socket.
 int32_t sock = net_socket(AF_INET, SOCK_STREAM, IPPROTO_IP);
 if (sock == INVALID_SOCKET)
 return -1;
 struct sockaddr_in server;
 memset(&server, 0, sizeof(server));
 server.sin_family = AF_INET;
 server.sin_port = htons(port);
 server.sin_addr.s_addr = INADDR_ANY;

 // Bind server socket.
 int32_t ret = net_bind(sock, (struct sockaddr *)&server, sizeof(server));
 if (ret < 0)
 return ret;

 // Listen on server socket.
 ret = net_listen(sock, 10);
 if (ret < 0)
 return ret;

 // Create client socket.
 struct sockaddr_in client;
 memset(&server, 0, sizeof(server));

 uint32_t client_len = sizeof(client);

 // Create receive buffer.
 char buffer[1024];

 while (true)
 {
 printf("\x1b[%d;%dH", 4, 0);
 printf("Waiting for data...");
 int32_t csock = net_accept(sock, (struct sockaddr *)&client, &client_len);
 if (csock < 0)
 return ret;

 // Reset buffer and receive contents.
 memset(buffer, 0, 1024);
 int32_t bytes = net_recv(csock, buffer, 1024, 0);
 printf("\x1b[%d;%dH", 5, 0);
 printf("Received %d bytes.", bytes);

 // Print buffer to screen.
 printf("\x1b[%d;%dH", 6, 0);
 printf(buffer);

 net_close(csock);
 }

 return 1;
}

How do I ...?

Draw to the screen?
Setup
There's quite a bit going on in the setup, but it thankfully is mostly boilerplate.

The functions you want, in order, are:

VIDEO_Init() : This needs to be called before any other VIDEO functions. Documentation
says it should be done "in the early stages of your main() , but we've had success in
moving it to a different function that is called from main.
VIDEO_GetPreferredMode() : This returns you your GXRModeObj struct pointer (a "rendermode
object") defining the screen layout and mode. What you get from this depends on the
console settings, and if it's PAL or NTSC, things like that. The parameter also takes a
GRXModeObj and seems to overwrite it if present? Not sure why you'd want that, just pass
NULL .
SYS_AllocateFramebuffer() : Allocate cacheline aligned memory for the external framebuffer
based on the passed rendermode object. Returns a 32-byte-aligned pointer to the
framebuffer's start address. This allocates the memory for our framebuffer, but we cannot
use it yet.
MEM_K0_TO_K1() : This is a macro to cast a cached virtual address to an uncached virtual
address. In this case, we use this to convert the address of the allocated framebuffer to
one we can use to write to it.
VIDEO_Configure() : Configures the "VI" (video interface?) with the given rendermode object.
Internally, this is setting a lot of video registers with our rendermode settings
VIDEO_SetNextFramebuffer() : This sets some video register to point to our allocated
framebuffer memory. In effect, we are telling the video hardware where the framebuffer
is.
VIDEO_SetBlack() : TRUE to black out the screen, FALSE not to.
VIDEO_Flush() : When we make changes to the video hardware registers in the above
functions, we do not actually make those changes to the hardware until we flush them
with this function. This in effect commits our changes.
VIDEO_WaitVSync() : Waits for the next vertical retrace.

Putting all that together, a simple (minimal) video setup would look like:

#include <gccore.h>

https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2531
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2820
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/system.c#L1421
https://github.com/devkitPro/libogc/blob/6ede5ab33b7ba91f476ebe62efa3c25fcd75a271/gc/ogc/system.h#L142
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2615
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2729
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2778
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2753
https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/video.c#L2692

Text output
Getting console output text out to the screen is quite easy. We need an additional setup function,
CON_Init() (sometimes seen with the old name console_init()). This takes as input:

static void* xfb = nullptr;
static GXRModeObj* rmode = nullptr;

void video_initialise()
{
	// Initialise the video system
	VIDEO_Init();

	// Obtain the preferred video mode from the system
	// This will correspond to the settings in the Wii menu
	rmode = VIDEO_GetPreferredMode(NULL);

	// Allocate memory for the display in the uncached region
	xfb = MEM_K0_TO_K1(SYS_AllocateFramebuffer(rmode));

	// Set up the video registers with the chosen mode
	VIDEO_Configure(rmode);

	// Tell the video hardware where our display memory is
	VIDEO_SetNextFramebuffer(xfb);

	// Make the display visible
	VIDEO_SetBlack(FALSE);

	// Flush the video register changes to the hardware
	VIDEO_Flush();

	// Wait for Video setup to complete
	VIDEO_WaitVSync();
	if (rmode->viTVMode & VI_NON_INTERLACE)
		VIDEO_WaitVSync();
}

https://github.com/devkitPro/libogc/blob/bc4b778d558915aa40676e33514c4c9ba2af66b8/libogc/console.c#L592

The framebuffer (the same parameter we gave to VIDEO_SetNextFramebuffer() , xfb in
examples).
The x, then y-coordinate to start output from. This allows for a border around the edge of
the screen.
The full width, then height, of the screen. Get these from the rendermode object (rmode
in the example).
The stride, which is the size of one line of the framebuffer in bytes. This is the width,
multiplied by the constant VI_DISPLAY_PIX_SZ , which is the size of one pixel in bytes.

And then that's it! You can then use printf() (from <stdio.h>) normally and it prints to the screen.

The console also accepts VT terminal escape codes, notably the cursorpos one to set the console
position. The statement printf("\x1b[2;0H"); sets the cursor to row 2, character 0. Remember the
padding border in the init function, a pos of 0,0 is not going to be the top-left of the screen if you
have a border set.

An example of printing to the console looks like:

Drawing to the framebuffer
Drawing to the framebuffer directly is the simplest method of drawing to the screen. All that's
required is writing the pixel values to the array directly inbetween clears each frame.

int main()
{
	// Initialise the video interface.
	video_initialise()

	// Initialise the console.
	CON_init(xfb, 20, 20, rmode->fbWidth, rmode->xfbHeight, rmode->fbWidth * VI_DISPLAY_PIX_SZ)

	// Set the cursor to row 2.
	printf("\x1b[%d;%dH", 2, 0);

	// Print the text.
	printf("Hello World!");
}

https://espterm.github.io/docs/VT100%20escape%20codes.html

RFCs
Suggestions for how all our different components should talk to one another

RFCs

In game client to server
controls
Scope
THis document describes the messages clients will send to the server to inform the server about
inputs on their end.

The following assumptions are made:

UDP
Packet length up to 512 bytes total (https://stackoverflow.com/questions/1098897/what-
is-the-largest-safe-udp-packet-size-on-the-internet ?)
No need for auth, ect, players ips will be known from the server so will recognize senders
like that

Packet structure
Field Length Description Notes

Message Type 1 byte Indicates the type of data
of the remainder of the
packet

I really hope we never get
past 255 different types....

Content Up to 511 bytes The actual data of the
request

Message Type
The following values are accepted for the Message Type field.

Value Description

0 Basic Controls

1-255 Reserved for future use

Content
Basic Controls
A message of this type is 1 byte long. Each bit has the following meaning:

Value Description

0 ↑

1 ↓

2 ←

3 →

4 ��

5 ��

6 Select

7 Start

TODO
Soemthing to say the client is leaving the game? IDK?

